Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Chloro- N -[(2-methylphenyl)sulfonyl]acetamide

K. Shakuntala, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 18 January 2011; accepted 28 January 2011
Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.050 ; ~ w R$ factor $=0.137$; data-to-parameter ratio $=13.4$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$, the amide H atom is $s y n$ with respect to the ortho-methyl group in the benzene ring and the $\mathrm{C}-\mathrm{S}-\mathrm{N}-\mathrm{C}$ torsion angle is $-66.9(2)^{\circ}$. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond occurs. The crystal structure features inversion-related dimers linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its ability to form hydrogen bonds in the solid state, see; Yang \& Guillory (1972). For hydrogen-bonding preferences of sulfonamides, see; Adsmond \& Grant (2001). For the effect of substituents on the crystal structures of sulfonoamides, see: Gowda et al. (2008a,b, 2010)

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$
$M_{r}=247.69$
Triclinic, $P \overline{1}$
$a=7.4439$ (8) £
$b=7.5195$ (8) Å
$c=10.519$ (1) \AA
$\alpha=93.64$ (1) ${ }^{\circ}$
$\beta=109.72$ (1) ${ }^{\circ}$
$\gamma=102.52(1)^{\circ}$
$V=535.07(10) \AA^{3}$
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$\mu=4.90 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.50 \times 0.40 \times 0.18 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
1891 independent reflections
diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.193, T_{\text {max }}=0.473$
3727 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.137$
$S=1.08$
1891 reflections
141 parameters
1 restraint

1771 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
3 standard reflections every 120 min intensity decay: 0.5%

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.79(2)$	$2.32(2)$	$3.087(3)$	$166(3)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{Cl} 1$	$0.79(2)$	$2.62(3)$	$2.978(2)$	$110(2)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2090).

References

Adsmond, D. A. \& Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077. Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.
Gowda, B. T., Foro, S., Nirmala, P. G. \& Fuess, H. (2010). Acta Cryst. E66, o1284.
Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. \& Fuess, H. (2008a). Acta Cryst. E64, o1492.
Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. \& Fuess, H. (2008b). Acta Cryst. E64, o1522.
Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.
Yang, S. S. \& Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.

supplementary materials

Acta Cryst. (2011). E67, o549 [doi:10.1107/S1600536811003655]

2-Chloro- N -[(2-methylphenyl)sulfonyl]acetamide

K. Shakuntala, S. Foro and B. T. Gowda

Comment

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors can give rise to polymorphism (Yang \& Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been investigated (Adsmond \& Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides (Gowda et al., 2008a,b, 2010). As a part of studying the substituent effects on the structures of this class of compounds, the structure of 2-chloro- N -(2-methylphenylsulfonyl)- acetamide (I) has been determined. The conformations of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds of the $\mathrm{SO}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{C}$ segment in the structure are anti to each other (Fig. 1), similar to that observed in N-(phenylsulfonyl)acetamide (II)(Gowda et al., 2010), N-(phenylsulfonyl)- 2,2-dichloroacetamide (III) (Gowda et al., 2008b) and N-(4-methylphenylsulfonyl)-2,2-dichloroacetamide (IV) (Gowda et al., 2008a).

The molecule in (I) is bent at the S-atom with a $\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angle of $-67.0(3)^{\circ}$, compared to the values of $-58.8(4)^{\circ}$ in (II), $-66.3(3)^{\circ}$ in (III) and $-71.1(2)^{\circ}$ in (IV). Further, the dihedral angle between the benzene ring and the SO2— $\mathrm{NH}-\mathrm{CO}-\mathrm{C}$ group in (I) is $78.9(1)^{\circ}$, compared to the values of $89.0(2)^{\circ}$ in (II), $79.8(1)^{\circ}$ in (III) and $81.0(1)^{\circ}$ in (IV),

The structure exhibits both the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{S})$ hydrogen bonds.
In the crystal structure, the pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules through inver-sion-related dimers into zigzag chains running in the $b c$-plane. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of chloroacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

supplementary materials

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N} — \mathrm{H}=0.86$ (3) \AA. The other H atoms were positioned with idealized geometry using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

The U^{ij} components of $\mathrm{C} 3, \mathrm{C} 4$ and C 5 were restrained to approximate isotropic behavoir.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

2-Chloro- N-[(2-methylphenyl)sulfonyl]acetamide

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{3} \mathrm{~S}$
$M_{r}=247.69$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.4439$ (8) \AA
$b=7.5195(8) \AA$
$c=10.519(1) \AA$
$\alpha=93.64(1)^{\circ}$
$\beta=109.72(1)^{\circ}$
$\gamma=102.52(1)^{\circ}$
$V=535.07(10) \AA^{3}$
$Z=2$
$F(000)=256$
$D_{\mathrm{x}}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 25 reflections
$\theta=7.0-23.1^{\circ}$
$\mu=4.90 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Prism, colourless
$0.50 \times 0.40 \times 0.18 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 1771 reflections with $I>2 \sigma(I)$
diffractometer

Radiation source: fine-focus sealed tube
graphite
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.193, T_{\text {max }}=0.473$
3727 measured reflections
1891 independent reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.137$
$S=1.08$
1891 reflections
141 parameters

1 restraint

$$
\begin{aligned}
& R_{\text {int }}=0.051 \\
& \theta_{\max }=66.9^{\circ}, \theta_{\min }=4.5^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections every } 120 \text { min } \\
& \text { intensity decay: } 0.5 \%
\end{aligned}
$$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0853 P)^{2}+0.2427 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.57$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.4813(4)$	$0.6426(3)$	$0.3198(2)$	$0.0356(6)$
C2	$0.6844(5)$	$0.7012(3)$	$0.3580(3)$	$0.0465(7)$
C3	$0.7891(6)$	$0.7927(4)$	$0.4905(3)$	$0.0674(10)$
H3	0.9259	0.8321	0.5206	$0.081 *$
C4	$0.6944(8)$	$0.8259(5)$	$0.5778(3)$	$0.0764(13)$
H4	0.7682	0.8892	0.6653	$0.092 *$

C5	$0.4938(8)$	$0.7680(5)$	$0.5388(3)$	$0.0754(12)$
H5	0.4320	0.7916	0.5992	0.090^{*}
C6	$0.3832(6)$	$0.6737(4)$	$0.4081(3)$	$0.0531(8)$
H6	0.2468	0.6321	0.3800	0.064^{*}
C7	$0.2227(4)$	$0.8123(3)$	$0.0563(2)$	$0.0336(5)$
C8	$0.1973(4)$	$0.9327(3)$	$-0.0539(3)$	$0.0397(6)$
H8A	0.2593	1.0596	-0.0110	0.048^{*}
H8B	0.0574	0.9224	-0.0984	0.048^{*}
C9	$0.7974(5)$	$0.6716(5)$	$0.2685(4)$	$0.0622(8)$
H9A	0.7241	0.6847	0.1766	0.075^{*}
H9B	0.8181	0.5500	0.2704	0.075^{*}
H9C	0.9226	0.7610	0.3010	0.075^{*}
N1	$0.3146(3)$	$0.6745(3)$	$0.05184(19)$	$0.0327(5)$
H1N	$0.366(4)$	$0.660(4)$	$-0.001(3)$	0.039^{*}
O1	$0.4251(3)$	$0.3986(2)$	$0.11017(18)$	$0.0450(5)$
O2	$0.1386(3)$	$0.4445(3)$	$0.1603(2)$	$0.0516(5)$
O3	$0.1615(3)$	$0.8425(3)$	$0.14615(19)$	$0.0504(5)$
C11	$0.29367(12)$	$0.88507(9)$	$-0.18091(7)$	$0.0525(3)$
S1	$0.32891(8)$	$0.51904(7)$	$0.15752(5)$	$0.0320(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0487(16)$	$0.0278(10)$	$0.0267(11)$	$0.0120(10)$	$0.0075(10)$	$0.0051(8)$
C2	$0.0512(18)$	$0.0318(12)$	$0.0458(14)$	$0.0066(11)$	$0.0055(12)$	$0.0113(10)$
C3	$0.076(3)$	$0.0459(16)$	$0.0511(18)$	$0.0051(15)$	$-0.0078(16)$	$0.0068(13)$
C4	$0.112(4)$	$0.0511(18)$	$0.0400(17)$	$0.017(2)$	$-0.0020(19)$	$-0.0004(13)$
C5	$0.137(4)$	$0.070(2)$	$0.0381(16)$	$0.051(2)$	$0.039(2)$	$0.0132(14)$
C6	$0.076(2)$	$0.0538(16)$	$0.0392(14)$	$0.0305(15)$	$0.0231(14)$	$0.0143(11)$
C7	$0.0357(13)$	$0.0325(11)$	$0.0310(11)$	$0.0118(9)$	$0.0084(9)$	$0.0030(8)$
C8	$0.0451(16)$	$0.0363(12)$	$0.0417(13)$	$0.0181(11)$	$0.0150(11)$	$0.0101(10)$
C9	$0.0466(19)$	$0.0606(18)$	$0.076(2)$	$0.0087(14)$	$0.0209(15)$	$0.0130(15)$
N1	$0.0407(12)$	$0.0335(10)$	$0.0287(9)$	$0.0161(8)$	$0.0141(8)$	$0.0063(8)$
O1	$0.0661(14)$	$0.0323(9)$	$0.0412(9)$	$0.0231(9)$	$0.0185(9)$	$0.0057(7)$
O2	$0.0432(12)$	$0.0498(11)$	$0.0537(11)$	$-0.0001(9)$	$0.0134(9)$	$0.0151(8)$
O3	$0.0648(14)$	$0.0597(12)$	$0.0438(10)$	$0.0355(10)$	$0.0277(10)$	$0.0130(8)$
C11	$0.0744(6)$	$0.0547(5)$	$0.0462(4)$	$0.0325(4)$	$0.0314(4)$	$0.0216(3)$
S1	$0.0384(4)$	$0.0259(4)$	$0.0298(4)$	$0.0087(3)$	$0.0093(3)$	$0.0049(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.386(4)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.367(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.398(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.502(3)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.760(2)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.768(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 9$	$1.494(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{C} 4$	$1.374(7)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.367(6)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600

sup-4

supplementary materials

$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.389(5)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{O} 3$	$1.208(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$122.5(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$122.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$115.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$124.9(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9$	$118.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.3(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.4(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.4(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.3
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.7(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.7
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$178.8(2)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$12.6(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$118.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.1(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.5(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$-178.1(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9$	$179.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.2(4)$
$\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.2(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.0(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	(5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	C
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	C
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	

N1-S1	1.6590 (19)
N1-H1N	0.79 (2)
O1-S1	1.4303 (18)
O2-S1	1.417 (2)
C7-C8-Cl1	116.35 (17)
C7-C8-H8A	108.2
C11-C8-H8A	108.2
C7-C8-H8B	108.2
C11-C8-H8B	108.2
H8A-C8-H8B	107.4
C2-C9-H9A	109.5
C2-C9-H9B	109.5
H9A-C9-H9B	109.5
C2-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C7-N1-S1	123.27 (17)
C7-N1-H1N	124 (2)
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	113 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	118.71 (12)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	108.92 (11)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	103.64 (10)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	108.50 (12)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	110.83 (12)
N1-S1-C1	105.34 (10)
N1-C7-C8-Cl1	-0.7 (3)
O3-C7-N1-S1	7.4 (4)
C8-C7-N1-S1	-172.97 (18)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	49.3 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$	176.60 (19)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 1$	-66.9 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	167.1 (2)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2$	-11.5 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1$	35.1 (2)
C6-C1-S1-O1	-143.56 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 1$	-76.3 (2)
C6-C1-S1-N1	105.0 (2)

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.79(2)$	$2.32(2)$	$3.087(3)$	$166(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl1}$	$0.79(2)$	$2.62(3)$	$2.978(2)$	$110(2)$

supplementary materials

Fig. 1

Fig. 2

